Screening of oilseed rape and other brassicaceous genotypes for susceptibility to Ceutorhynchus pallidactylus (Mrsh.)

Publication Type:Journal Article
:2010
Authors:M. Eickermann, Ulber B.
Journal:Journal of Applied Entomology
Volume:134
Pagination:542-550
Date Published:July
:0931-2048
:Ceutorhynchus pallidactylus
:

Production of oilseed rape, Brassica napus L., is affected by various insect pests. The cabbage stem weevil, Ceutorhynchus pallidactylus (Mrsh.) (Col.: Curculionidae), is one of the most damaging pests in Northern and Central Europe that requires regular control measures. Host plant resistance is a key factor in integrated pest management systems. To evaluate a large number of genotypes for their susceptibility to infestation by C. pallidactylus, new screening techniques were developed for testing both, the amount of feeding and the number of eggs deposited by adult C. pallidactylus on accessions of Brassicaceae under controlled conditions. In no-choice screening tests, the leaf area consumed by adult cabbage stem weevil was quantified on a wide spectrum of 107 brassicaceous genotypes (B. napus, Brassica rapa L. and Brassica oleracea L. cultivars, breeding lines, resynthesized rapeseed lines and wild Brassicaceae). In comparison to feeding on the standard cultivar 'Express', the average leaf area consumed by C. pallidactylus on nine oilseed rape cultivars, four resynthesized rapeseed lines and five other accessions (B. oleracea, Camelina alyssum (Mill.) and Lunaria annua L.) was significantly reduced by 44-90%. In dual-choice screening tests for the evaluation of oviposition preferences on 42 genotypes, female C. pallidactylus laid significantly fewer eggs into plants of two oilseed rape cultivars, five resynthesized rapeseeds and three accessions of B. oleracea and Brassica fruticulosa Cyrillo, respectively, than into plants of the standard cv 'Express'. Results of both laboratory screening tests were confirmed by results of additional field testing.

Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith